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Fábio Henrique Rojo Baio a, Francisco Eduardo Torres d, Carlos Antonio da Silva Junior c,* 

a Federal University of Mato Grosso do Sul (UFMS), Chapadão do Sul, 79560-000, MS, Brazil 
b Department of Agronomy, State University of São Paulo (UNESP), Ilha Solteira, 15385-000, SP, Brazil 
c Department of Geography, State University of Mato Grosso (UNEMAT), Sinop, 78550-000, MT, Brazil 
d State University of Mato Grosso do Sul (UEMS), Aquidauana, 79200-000, MS, Brazil   

A R T I C L E  I N F O   

Handling Editor: Cecilia Maria Villas Bôas de 
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A B S T R A C T   

Understanding the variability of soil CO2 emission across several land use and cover (LULC) classes and biomes 
and its relationship with climate variables is important to drive strategies that contribute to meeting local and 
international demands for sustainable development and low carbon agriculture. The hypothesis of this research is 
that soil CO2 emission in situ (FCO2) is variable between LULCs across different biomes and that there may be an 
association between soil CO2 flux and environmental variables such as temperature and soil moisture. This study 
evaluated FCO2, measured by a portable EGM-5 CO2 gas analyzer, CO2Flux model (obtained by remote sensing 
approach), soil moisture (SM), soil temperature (ST) and relationship between these variables in different LULC 
classes. We identified LULCs can contribute to carbon neutralization actions over the Cerrado, Atlantic Forest and 
Pantanal biomes located in State of Mato Grosso do Sul (MS), Brazil. Four LULC classes were evaluated in each 
biome: agriculture (soybean cultivation), pasture, eucalyptus plantation, and native vegetation. A principal 
component analysis (PCA) was performed to verify the relationship between biomes and LULC classes with the 
variables evaluated, and a Pearson correlation plot was created to assess the relationship between the variables 
evaluated. The lowest FCO2 values were found in eucalyptus and soybean crops, regardless of biome. Our 
findings reveal the existence of soil CO2 flux variability between the different LULCs and biomes. Pasture in 
Pantanal and Atlantic Forest biomes exhibited the highest FCO2 values. Eucalyptus cultivation and native forest 
showed negative CO2Flux values, regardless of biome. Lower FCO2 values were also observed for soybean 
cultivation. Such findings reinforce that native vegetation function as carbon sinks and that, therefore, their 
conservation is vital for the mitigation of CO2 emissions. However, soybean and eucalyptus farming can be 
strategic for low carbon agriculture in MS and carbon neutralization projects by simultaneously contribute to 
economic and sustainable development of the regions covered by the biomes evaluated here.   

1. Introduction 

Tropical soils, rich in biodiversity, play a crucial role in carbon 
stored, holding about a third of the soil carbon worldwide (Jackson 
et al., 2017). Soil respiration, also referred to as carbon dioxide efflux 
(FCO2) from soil, is an essential element of GHG emissions to the at-
mosphere in natural ecosystems (Cunha et al., 2021). The temporal 
variability of FCO2 is influenced by biotic and abiotic factors, such as 

changes in temperature, moisture, physical attributes, litter amount, and 
organic matter content (Cunha et al., 2021; Schwendenmann et al., 
2003; Silva et al., 2016; Vicent et al., 2006). 

In recent years, major sources of CO2 emissions have been these 
actions, through fossil fuel burning activities, which eventually release 
many tons of carbon into the atmosphere. Furthermore, there are also 
the impacts of alterations in land use and land cover (LULC), converting 
native ecosystems are transformed into new agricultural and livestock 
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frontier areas (Felizardo, 2022; Scarabel, 2021; Toledo, 2009). The 
replacement of native vegetation areas with agriculture can lead to al-
terations in the physical, chemical, and biological characteristics of the 
soil, triggering an imbalance in the dynamics of organic matter depo-
sition, which consequently increases the carbon emission in the form of 
gases into the atmosphere (Assunção et al., 2019; Rosset et al., 2014; 
Sales et al., 2018). 

Although action against global climate change (13th Sustainable 
Development Goal - SDG) is a global concern, Brazil is committed to 
reducing its carbon footprint (United Nations, 2022). Through Nation-
ally Determined Contributions (NDC) established in the Paris Agreement 
(UNFCCF COP21), the country has committed to reduce GHG emissions 
by 43% below 2005 levels by 2030. One of the actions in the agricultural 
sector is to recovering 15 million hectares of degraded pastures by 2030. 
Data from the System for Estimating Emissions and Removals of 
Greenhouse Gases (SEEG, 2021) reveals that land use change and the 
livestock sector are the country’s biggest emitters, accounting for 
around 70% of total CO2 equivalent emissions for the period from 1990 
to 2020. 

Although agriculture and livestock are one of the sectors responsible 
for global CO2 emissions, it is Brazil’s main economic activity, ac-
counting for 8% of the country’s Gross Domestic Product last year (IBGE, 
2023). Brazil is the largest global exporter of agricultural commodities, 
such as soybeans, sugar, beef, poultry, paper and cellulose (BRASIL, 
2023). Brazil, along with other countries in the world, such as the BRIC 
(Brazil, Russia, India and China) countries, which make up 42% of the 
world’s population, are among the countries with the highest agricul-
tural production. Agriculture is considered one of the main drivers of 
sustainable development in developing countries and in the context of 
the SDGs, it is an essential tool for eradicating absolute poverty (Agboola 
and Bekun, 2019; Pata, 2021). Rafiq et al. (2016), in a study employing 
three different panel data estimators, reported that agriculture play a 
significant role in reducing pollution in 53 selected countries. Likewise, 
Agboola and Bekun (2019) reported that agriculture has an insignificant 
positive impact on CO2 emissions in Nigeria. Therefore, there is a sig-
nificant need to know the dynamics of soil CO2 in different LULCs in 
order to identify which systems absorb more CO2, acting as sinks. Such 
information will contribute for further progress in adopting more sus-
tainable technologies for agricultural development worldwide and 
Brazil (Buainain et al., 2020; Pata, 2021). 

In some Brazilian regions, where the agricultural frontier is partially 
consolidated, LULC changes and soil management are varied (Santos, 
2019). The State of Mato Grosso do Sul (MS), whose predominant 
economy is agricultural, ranks 11th in greenhouse gas (GHG) emissions 
and is the fifth largest national producer of grains (Coutinho et al., 2019; 
IBGE, 2022), with agricultural activities contributing 56% of emissions 
and 33% from land use change (SEEG - System for Estimating Gas 
Emissions, 2021). MS still consists of three biomes: Cerrado, Atlantic 
Forest, and Pantanal, which has recently undergone an accelerated 
process of replacing native vegetation by the advance of agricultural 
frontiers (Araujo et al., 2023; Carvalho et al., 2014; Lapola et al., 2014; 
Thomazini et al., 2015). 

Additionally, climatic variables have a direct relationship with FCO2 
to the atmosphere, the major factors being soil moisture and tempera-
ture (Brito et al., 2010). Thus, knowing the variability of FCO2 emissions 
in agricultural areas and its relationship with climatic variables is 
crucial to drive sustainable development as well as contribute to sup-
plying the growing carbon markets (Petrielli et al., 2023; Reisch, 2021). 
Understanding the dynamics of CO2 flux in different LULC in each biome 
of MS is crucial for the adoption of strategies that contribute to meeting 
state and international demands for sustainable development and zero 
carbon. The hypothesis of this research is that FCO2 is variable between 
LULCs across different biomes and that there may be an association 
between soil CO2 flux and environmental variables such as temperature 
and soil moisture. The objectives of the study were i) to estimate the 
FCO2, the CO2 flux model (obtained by remote sensing), temperature 

(ST) and soil moisture (SM), ii) to evaluated the relationship between 
these variables in different LULC classes and iii) identify LULCs that 
have a lower CO2 flow and consequently contribute to carbon neutral-
ization actions in the Cerrado, Atlantic Forest, and Pantanal biomes. 

2. Material and methods 

2.1. Study area 

The investigation was carried out in MS, situated in Brazil Midwest 
region. Spanning across an expanse of 357,145.32 km2 and comprising 
78 municipalities, this region boasts a rich tapestry of edaphoclimatic 
characteristics. These characteristics are widely distributed across three 
distinct biomes: the Cerrado, the Atlantic Forest, and Pantanal (Fig. 1). 
The altitudes within Mato Grosso do Sul exhibit considerable variation, 
ranging from 24 to 1000 m above sea level, marking it as a diverse and 
geographically dynamic region within South America. 

With 22% of the entire Brazilian territory, the Cerrado biome is the 
second largest in South America and covers an astonishing 65% of the 
unique features of MS, and is marked by the transition from warm low- 
latitude to temperate mid-latitude mesothermal climates (Sartori et al., 
2018). MS is home to 25% of the Pantanal, featured by long-term floods 
that happen every year (Mioto et al., 2012). Atlantic Forest is a biome 
composed of mountain ranges, valleys and plateaus. Characterized as 
one of the most diverse and widespread tropical forests in South 
America, it is considered to be the most endangered Brazilian biome 
(Clemente et al., 2017). 

Four LULC classes were evaluated in each biome: agriculture, 
pasture, eucalyptus plantation, and native vegetation. For the class 
agriculture, areas that grow soybean during the first crop season (know 
as "safra") with a history of at least four crop years were chosen. In these 
areas, the evaluations occurred during the vegetative peak of the crop, 
approximately 60 days after emergence (DAE). The remaining evalua-
tions were carried out in areas containing each LULC for at least four 
years. Soybean is the main agricultural crop in the state of Mato Grosso 
do Sul, corresponding to 8.9% of the land use and occupations in the 
State (MapBiomas, 2023). Eucalyptus is the main forest genus planted in 
the state of Mato Grosso do Sul, which currently has the 3rd largest area 
of eucalyptus plantations and the 2nd largest increase in the area of 
eucalyptus plantations in the country (IBÁ, 2022). Pasture is the main 
land use and cover in the State of MS, accounting for around 36% of all 
land cover in the State (MapBiomas, 2023). The abovementioned factors 
were decisive in choosing these LULCs for the present study. Addition-
ally, native vegetation was evaluated as a way of having a reference 
LULC, i.e. areas with optimal CO2 flow conditions due to the absence of 
anthropization. 

The evaluations in the Cerrado, Pantanal, and Atlantic Forest biomes 
were carried out within the municipalities of Chapadão do Sul, Aqui-
dauana and Deodápolis, respectively (Fig. 1 and Table 1). These mu-
nicipalities have edaphoclimatic conditions that are representative of 
the biomes in which they are located (Silva Junior et al., 2020; Oli-
veira-Júnior et al., 2020; Abreu et al., 2022; Viana et al., 2023), as well 
as having areas with the different land uses and occupation evaluated 
(soybean, eucalyptus, pasture, and native vegetation) with a known 
history of management, in addition to being easily accessible in terms of 
infrastructure and logistics for mobility, which were crucial aspects for 
conducting this research. Such factors were the reasons why these sites 
were chosen to represent the three biomes under study. 

2.2. Data 

For soil CO2 emission in situ (FCO2) assessments, the portable EGM-5 
system (PP-Systems, Amesbury, USA), model AGA560, was used at 100 
points for each LULC in each biome. EGM-5 system has been used for in- 
situ data acquisition in recently published studies (Hong et al., 2023; Liu 
et al., 2023; Yerli and Sahin, 2023; Witcombe et al., 2023). This 
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equipment monitors the variations of CO2 concentration inside the soil 
chamber by means of optical absorption spectroscopy in the infrared 
spectral region (ACS041). The soil chamber is a closed system with an 
internal volume of 854.2 cm3 and a circular contact area of 83.7 cm2, 
which was attached to PVC collars inserted 24 h in advance into the soil 
at each point. This procedure stems from the fact that the direct insertion 
of the chamber on the soil can lead to disturbances causing additional 
CO2 emissions from the soil. 

FCO2 was measured at each sampling point by adjusting the air CO2 
concentration inside the chamber according to a quadratic regression 
over the time after its closing and water offset. The measuring procedure 
to assess CO2 emissions from the soil took 30 s at each point and the 
barometric pressure inside the chamber was calculated every 1.0 s, 
totaling 30 readings per sampling point. FCO2 (μmol m− 2 s− 1) was 

calculated according to Equation (1), proposed by Parkinson (1981): 

FCO2 =
dC
dT

×
P

1013
×

273
273 + T

×
V
A
×44.615 (1)  

Wherein: dC is the variation in CO2 concentration (ppm); dT is the 
process execution time (1 s); P is the measured barometric pressure 
(mbar); T is the air temperature in ◦C; V is the volume of the EGM-5 
chamber (m3); A is the area of the PVC rings installed in the soil (m2). 

The soil temperature at the same collection points was monitored 
using a temperature sensor that is an integral component of the ACS044 
system. It consists of a 20 cm rod that is inserted inside the soil at 5 cm 
from the place where the PVC collars were previously installed for the 
evaluation of soil CO2 emission. Similarly, soil moisture was recorded 
using a HydraProbe sensor device (Stevens), This probe consists of a 
probe with three 12 cm rods that were inserted inside the soil perpen-
dicular to the surface, also 5 cm from the PVC collars. The soil moisture 
value is derived from the time it takes an electric current to travel 32 mm 
from one rod to another. Soil temperature and soil moisture assessments 
were performed together with soil CO2 emission assessments. All mea-
surements in situ along the LULC took place in the same week between 
November 16th and 19th, 2022. During these evaluations there was no 
rain in the evaluated areas. 

CO2Flux model (Rahman et al., 2001) was adopted as a way of 
estimating CO2Flux via remote sensing data and to assess the effec-
tiveness of the vegetation-related carbon sequestration in the same 100 
points of each LULC and biome evaluated. For this purpose, the scaled 
photochemical reflectance index (sPRI) was calculated according to 
equation (2) (Gamon et al., 1997; Martins and Baptista, 2013). This 
index is related to the carotenoid content in the leaves and, 

Fig. 1. Location of municipalities (Chapadão do Sul, Aquidauana and Deodápolis) in the different biomes of the State of Mato Grosso do Sul (MS), Brazil.  

Table 1 
Geographical coordinates of land use and land cover (LULC) evaluated in Cer-
rado, Pantanal, and Atlantic Forest biomes of Mato Grosso do Sul.  

Biome Agriculture Pasture Eucalyptus 
plantation 

Native 
vegetation 

Cerrado − 52.62096, 
− 18.771551 

− 52.707946, 
− 18.786943 

− 52.622081, 
− 18.772064 

− 52.714427, 
− 18.784041 

Pantanal − 55.672558, 
− 20.451933 

− 55.670038, 
− 20.448707 

− 55.669118, 
− 20.449092 

− 55.673781, 
− 20.451619 

Atlantic 
Forest 

− 54.255447, 
− 22.238415 

− 54.242234, 
− 22.245747 

− 54.152372, 
− 22.23503 

− 54.235582, 
− 22.238022 

The first value in each cell refers to the longitude relative to West Greenwich 
(Western Hemisphere), while the value after the comma refers to the latitude 
relative to the Southern Hemisphere. 
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consequently, to the CO2 storage rate (Rahman et al., 2001). 

sPRI =
[(

B − G
B + G

)

+1
]

×0.5 (2)  

Wherein: A and Ve are the spectral reflectance in the blue and green 
bands, respectively; 

Subsequently, the NDVI (Normalized Difference Vegetation Index) 
was calculated using Equation (3) (Tucker, 1979). This index is associ-
ated with the vigor of photosynthetically active vegetation (Rahman 
et al., 2001) 

NDVI =
N − R
N + R

(3)  

where N and R are the near-infrared and red spectral reflectance, 
respectively; 

Equation (4) calculates the CO2Flux (μmol m− 2 s− 1), proposed by 
Santos (2017), multiplied by NDVI and sPRI. Negative values (− ) indi-
cate net carbon absorption (photosynthesis) by the surface and positive 
values (+) indicate carbon loss to the atmosphere (respiration). 

CO2Flux= 13.63− (66.207 ∗ (NDVI ∗ sPRI)) (4) 

Refining the accuracy and calibration of the CO2Flux model in Brazil, 
using direct measurement of CO2 fluxes through the turbulent vortex 
covariance technique, as described by Goulden et al. (1996) and vali-
dated by Della-Silva et al. (2022). The spectral reflectance used for 
CO2Flux calculation were obtained using images from the fully auto-
mated cloud-based Planet platform (https://www.planet.com/products 
/platform) for online image download, processing, and management 
with a 3 m spatial resolution. 

2.3. Approach 

In the analyses carried out with R software, boxplots were generated 
to verify the dispersion of the variables in each LULC and biome. Prin-
cipal component analysis (PCA) was applied to verify the relationship 
between the variables evaluated with the LULC classes and biomes. A 
rotated component matrix was included to establish a simple relation-
ship between the factors and the components using the Varimax 
orthogonal rotation in combination with the Kaiser’s normalization 
(equalizing communalities temporarily while rotating). Subsequently, a 
Pearson correlation plot was made to verify whether there is a linear 
relationship between the variables evaluated. 

3. Results 

Soil CO2 emission in situ (FCO2) showed high variability between 
biomes and LULC classes (Table 2, Fig. 2). Regardless of the biome, the 
lowest values were obtained in eucalyptus and soybean cultivation 
(agriculture). In these LULC, the Cerrado biome presented the lowest 
values. The significant impact of land use activities, with pasture man-
agement, in the Pantanal and Atlantic Forest biomes resulted in elevated 
FCO2 levels. Native forest presented intermediate FCO2 and similar 
values across biomes. 

Soil temperature (ST) showed high variability in the Cerrado and 
Atlantic Forest biomes in all LULC classes, except for the native forest. 
Pantanal showed the lowest ST variability and means, regardless of 
LULC. In Cerrado, soybean cultivation presented the highest mean ST. 
On the other hand, eucalyptus plantation presented the highest mean in 
the Atlantic Forest. Soil moisture (SM) obtained the lowest means and 
variability in eucalyptus cultivation, especially in the Cerrado and 
Pantanal biomes. The SM values in the native forest showed higher 
variability in the Pantanal biome, while the other biomes showed similar 
mean and variability. In Pasture, the lowest mean SM was obtained in 
the Pantanal, while in soybean cultivation the lowest mean was 
observed in the Cerrado. 

Eucalyptus cultivation and native forest showed negative CO2Flux 
values, regardless of biome. The remaining LUC classes presented pos-
itive CO2Flux means in all biomes, except for soybean cultivation in the 
Atlantic Forest. Higher variability was found in soybean cultivation 
compared to the other LULC classes. 

Fig. 3 shows the PCA for the variables evaluated in the three biomes 
of the State of Mato Grosso do Sul. It is evident from that the points 
sampled in the Cerrado biome are the most separated from the others in 
the biplot. These points are close to the ST vector, as this biome obtained 
the lowest means and variability for its LULC classes. The similarity 
between Atlantic Forest and Pantanal is associated with the FCO2 vector, 
where these biomes obtained the highest means and variability for this 
variable. 

The values in Table 3 for factor loadings indicate the contribution of 
each variable for rotated component. The results clearly showed that 
RC1 was having a high proportion of variation of 0.35 with greater 
contribution from CO2flux (0.81) and SM (0.78), while in the RC2 factor 
there was a high loading for FCO2 (0.79) and ST (0.69). 

Fig. 4 shows the PCA for the variables evaluated in the LULC classes 
in each biome. It is possible to verify that in the Cerrado biome (Fig. 4A), 
LULC classes presented distinct behaviors associated with specific var-
iables. Native forest had higher FCO2 means, while pasture had the 
highest SM means in this biome. The other variables (CO2flux and ST) 
were associated with soybean cultivation. 

In the Atlantic Forest (Fig. 4B) and Pantanal (Fig. 4C), pasture 
differed from other LULC by presenting higher FCO2 and lower CO2Flux 
means. Native forest was similar to soybean and eucalyptus cultivation 
in this biome, especially in terms of ST values in Atlantic Forest. In 
Pantanal, there was higher similarity between soybean cultivation and 
native forest, which was associated with the highest SM means. Euca-
lyptus cultivation in the Pantanal biome was associated with slightly 
higher ST means compared to the other LULC classes. 

Pearson’s correlations between the variables evaluated along the 
biomes are presented in Fig. 5. The variable FCO2 correlated negatively 

Table 2 
Mean ± standard error for the variables soil CO2 emission in situ (FCO2), soil 
moisture (SM), soil temperature (ST), and CO2Flux evaluated in different land 
uses and land cover in the biomes of Mato Grosso do Sul, Brazil.  

Biome Agriculture Pasture Eucalyptus 
plantation 

Native 
vegetation 

Soil CO2 emission in situ 

Cerrado 1.33 ± 0.04 2.60 ±
0.10 

1.03 ± 0.04 3.73 ± 0.08 

Pantanal 1.03 ± 0.06 6.26 ±
0.12 

2.46 ± 0.06 4.08 ± 0.19 

Atlantic 
Forest 

2.35 ± 0.08 6.50 ±
0.15 

3.03 ± 0.07 5.02 ± 0.08  

Soil moisture 
Cerrado 2.74 ± 0.14 7.45 ±

0.24 
0.89 ± 0.11 4.89 ± 0.18 

Pantanal 5.48 ± 0.25 1.99 ±
0.26 

0.50 ± 0.06 6.49 ± 0.27 

Atlantic 
Forest 

5.55 ± 0.18 6.61 ±
0.35 

4.12 ± 0.14 3.87 ± 0.13  

Soil temperature 
Cerrado 41.25 ±

0.41 
33.99 ±
0.22 

32.96 ± 0.28 30.92 ± 0.08 

Pantanal 26.51 ±
0.06 

26.70 ±
0.04 

27.42 ± 0.02 26.37 ± 0.01 

Atlantic 
Forest 

32.72 ±
0.37 

26.88 ±
0.03 

33.51 ± 0.12 33.33 ± 0.06  

CO2Flux 
Cerrado 5.33 ± 0.08 14.69 ±

0.07 
− 2.73 ± 0.08 − 1.12 ± 0.05 

Pantanal 0.43 ± 0.16 0.45 ±
0.03 

− 2.98 ± 0.05 − 4.21 ± 0.07 

Atlantic 
Forest 

− 2.80 ±
0.05 

1.51 ±
0.05 

− 3.12 ± 0.05 − 2.73 ± 0.06  
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and at intermediate magnitude with ST, with emphasis on the Atlantic 
Forest, where this correlation presented greater magnitude, while in the 
Pantanal it was null. Specific correlations occurred positively between 
FCO2 x SM and FCO2 x CO2Flux in the Cerrado and Atlantic Forest bi-
omes, respectively. 

There was a negative correlation between ST and SM in moderate 
magnitude in the Pantanal and Atlantic Forest biomes. In Cerrado, a 
positive correlation was observed between ST and CO2flux, while in the 
Atlantic Forest this correlation was negative. The correlation between 
SM and CO2flux, revealed a complex interplay of these variables, 
exhibited low and moderate magnitudes in the Cerrado and Atlantic 
Forest biomes, respectively. 

4. Discussion 

Differences in soil carbon dioxide flux in situ between LULC classes 
and biomes can be induced by soil property conditions, vegetation 
composition, soil organic matter (SOM), and interactions between these 

factors. The amount of carbon contained in SOM is being lost since the 
1850s by land use change and increasing pressure on agroecosystems by 
rising global demand for energy and food (Hossain, 2020; Lal, 2010; 
Sanderman et al., 2017). 

In this study, there was variability in FCO2 between LULC and bi-
omes, a fact reported in other research (Canteral et al., 2023; Lucena 
et al., 2023; Rossi et al., 2023; Tavanti et al., 2020), where the lowest 
FCO2 values were found in eucalyptus and soybean cultivation, 
regardless of biome, indicating that these LULC have vegetation with 
lower metabolic activity, resulting in a lower CO2 release to the atmo-
sphere. According to Rossi et al. (2023) the lowest FCO2 values in a time 
series are in the high and low-productive potential soybean LULC. These 
findings are relevant from an economic and environmental perspectives, 
as they indicate that eucalyptus and soybean may be crops to be 
considered in carbon neutralization strategies within sustainable 
development approaches, such low carbon agriculture. These crops can 
be part of strategies aimed at replacing areas with degraded pastures, for 
example, or even in association with productive pasture areas, such as in 

Fig. 2. Boxplot for the variables soil CO2 emission in situ (FCO2), soil moisture (SM), soil temperature (ST), and CO2Flux evaluated in different land uses and land 
cover in the biomes of Mato Grosso do Sul, Brazil. 
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crop-livestock-forest integration systems. 
On the other hand, the highest FCO2 values were observed in the 

pasture, Pantanal, and Atlantic Forest biomes. Native forest showed 
intermediate values of FCO2, without great variations among biomes. 
Ecosystems that have greater potential for water storage and regulation 
have higher soil CO2 flux rates (McKnight et al., 2017). Thus, the type of 
vegetation cover and land use have a significant impact on soil CO2 
emissions (Chamizo et al., 2017; Ghimire et al., 2017; Lal, 2013). 

Temperature and moisture are controls that most influence SOM 
dynamics and CO2 respiration in soils, with higher rates of CO2Flux 
model observed in soils with higher moisture and temperature 
(López-Santiago et al., 2023; Rosenzweig et al., 2016). SOM decompo-
sition is temperature-dependent, and both direct (enzyme kinetics and 
microbial metabolism) and indirect (carbon substrate solubility and 
diffusion) effects of temperature play an important role (Conant et al., 
2011; Ramesh et al., 2019; Sihi et al., 2016), where tropical evergreen 
forests usually have higher soil respiration rates due to their high net 

primary productivity (Ren et al., 2012; Rolando et al., 2017). No study 
has presented a single equation showing the temperature dependence of 
soil respiration, and the relationship of variation between different 
ecosystems and soil types. 

Changes in soil carbon sequestration have a marked influence on the 
global carbon cycle and climate change (Ramesh et al., 2019). However, 
detecting the management practices and land uses that act as carbon 
sinks is essential for establishing strategies to mitigate climate change. 
Our results revealed negative CO2Flux values for eucalyptus and native 
forest areas in all biomes, indicating that these LULC classes act as 
carbon reservoirs, sequestering CO2 from the atmosphere. These nega-
tive values are directly linked to the photosynthetically active radiation 
(PAR) absorbed by the green biomass of the studied sites, i.e., the canopy 
photosynthetic capacity present in the LULC (Della-Silva et al., 2022). 
The other LULC have positive CO2Flux values in all biomes, except 
soybean cultivation in the Atlantic Forest, which had higher variability 
compared to the other LULC classes. 

The State of Mato Grosso do Sul has recently become the largest pulp 
exporter of the country. Forestry sector, which is largely made up of 
eucalyptus plantations, is one of the main economic activities in the 
State, which as well as being concerned with economic growth, also has 
the ambitious goal of becoming a Carbon Neutral state by 2030. 
Considering the goals assumed by Brazil under the Paris Agreement 
under the United Nations Framework Convention on Climate Change, 
enacted by Federal Decree No. 9073 of June 5, 2017, the State of Mato 
Grosso do Sul joined the "Race to Zero" and "Under 2◦ Coalition" cam-
paigns under the United Nations Framework Convention on Climate 
Change, and has sought public actions and policies that contribute to 
GHG emissions in various productive sectors. In this scenario, the LULCs 
evaluated in our study are of great importance in achieving these goals, 

Fig. 3. Principal component analysis for the variables soil CO2 emission in situ (FCO2), soil moisture (SM), soil temperature (ST), and CO2Flux evaluated in the 
biomes Cerrado, Atlantic Forest (MA) and Pantanal of Mato Grosso do Sul, Brazil. 

Table 3 
Factor loadings for rotated component (RC) matrix for the variables soil CO2 
emission in situ (FCO2), soil moisture (SM), soil temperature (ST), and CO2Flux 
evaluated in different land uses and land cover in the biomes of Mato Grosso do 
Sul, Brazil.  

Variable RC1 RC2 

FCO2 − 0.33 0.79 
SM 0.78 − 0.29 
ST 0.20 0.69 
CO2Flux 0.81 0.19 
Proportion of variance 0.35 0.30  
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since the state government can create policies to encourage production 
systems that contribute to mitigating carbon emissions, such as the 
adoption of integrated livestock-forestry (LF) or crop-livestock-forestry 
systems (ICLF). 

Integrated systems, such as ICLF, which combine crop, livestock and 
trees, or even livestock-forestry integration have been proposed as a 
more sustainable alternative for livestock production in the tropics due 
to its benefits from both an economic and sustainable perspective. 
Several studies has reported that ICLF can generate important benefits to 
the ecosystem, such as improvements in soil properties and biodiversity 
(Chakravarty et al., 2019; Mora et al., 2016). Portilho et al. (2018) 
verified that management systems under integrated crop-livestock 
farming in Southern State of Mato Grosso do Sul maintained a rela-
tively diverse N cycling bacterial community, possibly promoting soil 
quality and N cycling processes. Our results point to the potential for 
eucalyptus plantations to sequester carbon, regardless of the biome 
evaluated. In this sense, the adoption of eucalyptus plantations in inte-
gration with pastures, which our study showed to be the LULC with the 
highest FCO2, can be an important strategy to mitigate GHG emissions in 
the agricultural sector and consequently be implemented as a more 

sustainable technology for MS and Brazil to achieve the SDGs by 2030. 
The Cerrado biome is separated from the other biomes in the biplot, 

being closer to the ST variable and exhibiting the lowest means and 
variability of ST among the LULC classes. Increased temperature can 
amplify CO2 efflux, impacting atmospheric CO2 concentrations. (Sanjita 
et al., 2022). High soil temperature, as presented by the relationship 
between ST and the Cerrado biome can affect and be affected by respi-
ration rates of microorganisms influencing various physiological pro-
cesses and potentially resulting in significant alterations in the 
community composition of the biotic soil component (Mohan, 2019). 
Conversely, the Atlantic Forest and Pantanal biomes present a similarity 
by being associated with the FCO2 variable, showing the highest means 
and variability in these biomes by sharing some environmental char-
acteristics due to this variable. 

Tree species in forest soil biogeochemical processes and soil micro-
bial communities provide organic matter through litter and roots (Zheng 
et al., 2017), which can shape soil microbial communities by altering 
soil abiotic variables such as pH and resource availability. (Lee et al., 
2023). Soil pH influences the solubility of humic substances and the 
desorption of SOM from minerals. Higher pH increases the solubility of 

Fig. 4. Component analysis for the variables soil CO2 emission in situ (FCO2), soil moisture (SM), soil temperature (ST), and CO2Flux evaluated in different land uses 
and land cover in the Cerrado (A), Atlantic Forest (B), and Pantanal (C) biomes of Mato Grosso do Sul, Brazil. 
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humic substances and promotes their dissolution, promoting higher 
microbial carbon use efficiency and possibly higher SOM sequestration 
(Ekström et al., 2011; Garbuio et al., 2011; Sihi et al., 2016). 

There are complex interactions and different responses in each LULC 
class and biome with the variables. The results found indicate that the 
vegetation contained in the LULC, ST and SM play important roles in 
regulating soil carbon dioxide flux, with a negative relationship between 
FCO2 and ST, especially in the Atlantic Forest, while this association was 
null in the Pantanal biome, as already reported in other studies (Canteral 
et al., 2023; Lucena et al., 2023; Moitinho et al., 2021a, 2021b; Rossi 
et al., 2023). Soil moisture has a beneficial influence on soil 

soil respiration in seasonally rainy areas, while soil temperature has 
a negative influence, impacting root respiration on total FCO2 (Lima 
et al., 2023; Meena et al., 2020; Silva et al., 2017). The variables 
assessed do not indicate a direct understanding of the relationships be-
tween them. Therefore, future research, such as controlled experiments 
or long-term studies, is needed to investigate the underlying mecha-
nisms and confirm the observed relationships. 

Future researches should be carried out in different geographical and 
climatic conditions to those assessed here, such as other municipalities 
within each biome and assessments at other seasons of the year. Mea-
surements carried out in different locations and throughout the seasons 
require more time and financial and human resources, but could 
contribute to a broader understanding of the dynamics of FCO2 and its 
relationship with factors such as local precipitation and temperature. 

Further studies should also be carried out on land uses and occupa-
tions different from those evaluated here, which are the limitations of 
our study. Here, we limited the assessments to native vegetation and the 
main agricultural activities in the State of Mato Grosso do Sul (soybean, 
eucalyptus, pasture) as a way of obtaining a more comprehensive study 
focused on the major state’s economic potentialities that can contribute 

to neutralizing carbon emissions in short and mid-term. However, there 
are other important LULCs in the State of MS, especially within agri-
culture, such as maize, sugarcane and cotton, which are important 
production systems not only for the State but for the entire country. 
Other locations in Brazil should also be evaluated in order to obtain 
information on the dynamics of FCO2 in other biomes and different 
LULCs according to the socio-economic and sustainable potential of each 
region. 

5. Conclusions 

The results obtained here show the existence of soil CO2 emission in 
situ (FCO2) variability between the different LULCs and biomes. The 
lowest FCO2 values were found in eucalyptus plantation and soybean 
cultivation, regardless of the biome. In these LULC classes, the Cerrado 
biome presented the lowest FCO2 values. On the other hand, higher 
FCO2 values were verified in pasture areas in the Pantanal and Atlantic 
Forest. The lowest soil temperature means were obtained in the Pan-
tanal, regardless of LULC, while soil moisture obtained the lowest means 
and variability in eucalyptus cultivation, especially in the Cerrado and 
Pantanal. Eucalyptus cultivation and native forest showed negative 
CO2Flux values, regardless of biome. In this scenario, our study re-
inforces that native vegetation areas function as carbon sinks and that, 
therefore, their conservation is vital for the mitigation of CO2 emissions 
to the atmosphere. On the other hand, our findings also reveal that 
soybean and eucalyptus farming can be strategic activities for carbon 
neutralization projects, as they can simultaneously contribute to eco-
nomic and sustainable development in Mato Grosso do Sul and other 
Brazilian regions that cover the biomes assessed here. 

Future researches should be carried out in other geographical and 
climatic conditions different from those evaluated here, such as more 

Fig. 5. Pearson correlation analysis for the variables soil CO2 emission in situ (FCO2), soil moisture (SM), soil temperature (ST), and CO2Flux evaluated in different 
land uses and land cover in Cerrado (CER), Atlantic Forest (MA) and Pantanal (PANT) biomes of Mato Grosso do Sul, Brazil. 
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municipalities within each biome, different land uses and occupation 
and long-term evaluations over different seasons of the year. 
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